Computational modeling and visualization of physical systems with Python

Digital Online Companion

J Wang
Digital Online Companion

The Digital Online Companion contains advanced and in-depth topics arranged in parallel chapters to the print edition. It is intended to provide closely-related but optional material at upper undergraduate or graduate levels.

Throughout, references to the print edition are indicated by the “A:” prefix, including the completely merged index.
Contents

1 Introduction 1

2 Free fall and solutions of ODEs 3

3 Realistic projectile motion with air resistance 5
 3.1 Exercises and Projects 5
 3.A Approximate formulas for the Lambert \(W \) function ... 7

4 Planetary motion and few-body problems 11
 4.1 Exercises and Projects 11

5 Nonlinear dynamics and chaos 19
 5.1 The kicked rotor and the stadium billiard 19
 5.2 Exercises and Projects 25
 5.A Renormalization and self-similarity 28
 5.B Fast Fourier transform (FFT) 30
 5.C Program listings and descriptions 44

6 Oscillations and waves 47
 6.1 The hanging chain and the catenary 47
 6.2 Exercises and Projects 53
 6.A Gauss elimination and related methods 55
 6.B Program listings and descriptions 57
CONTENTS

7 Electromagnetic fields 65
 7.1 Equilibrium of charges on a sphere 65
 7.2 Exercises and Projects 69

8 Time-dependent quantum mechanics 75
 8.1 Scattering and split evolution operator 75
 8.2 Quantum transitions and coupled channels 86
 8.3 Exercises and Projects 100
 8.A Theory of Gaussian integration 107
 8.B Profiling code execution 109
 8.C Coupled channels in real arithmetic 110
 8.D Program listings and descriptions 112

9 Time-independent quantum mechanics 115
 9.1 Energy level statistics 115
 9.2 Quantum chaos .. 117
 9.3 Exercises and Projects 126
 9.A Program listings and descriptions 135

10 Simple random problems 137
 10.1 Game of life ... 137
 10.2 Traffic flow .. 139
 10.3 Ants raiding patterns 142
 10.4 Exercises and Projects 145
 10.A Program listings and descriptions 149

11 Thermal systems 153
 11.1 Thermal relaxation of a suspended chain 153
 11.2 Particle transport 160
 11.3 Bose-Einstein condensation 170
 11.4 Exercises and Projects 177
 11.A Mean field approximation of 2D Ising model 184
 11.B Program listings and descriptions 187

12 Classical and quantum scattering 195
 12.1 Orbiting ... 195
 12.2 Green’s function method 198
 12.3 Scattering at low and high energies 202
12.4 Inelastic scattering and atomic reactions 211
12.5 Classical dynamics of atomic reactions 221
12.6 Exercises and Projects 237
12.A The phase shift integral 251
12.B Direct determination of cross sections 253
12.C WKB scattering wave functions 254
12.D The Born T-Matrix 255
12.E The microcanonical ensemble 260
12.F Time-dependent leapfrog method 261
12.G Program listings and descriptions 262

Bibliography ... 267

Index ... 271